218,009 research outputs found

    Link power coordination for energy conservation in complex communication networks

    Full text link
    Communication networks consume huge, and rapidly growing, amount of energy. However, a lot of the energy consumption is wasted due to the lack of global link power coordination in these complex systems. This paper proposes several link power coordination schemes to achieve energy-efficient routing by progressively putting some links into energy saving mode and hence aggregating traffic during periods of low traffic load. We show that the achievable energy savings not only depend on the link power coordination schemes, but also on the network topologies. In the random network, there is no scheme that can significantly outperform others. In the scale-free network, when the largest betweenness first (LBF) scheme is used, phase transition of the networks' transmission capacities during the traffic cooling down phase is observed. Motivated by this, a hybrid link power coordination scheme is proposed to significantly reduce the energy consumption in the scale-free network. In a real Internet Service Provider (ISP)'s router-level Internet topology, however, the smallest betweenness first (SBF) scheme significantly outperforms other schemes.Comment: 6 pages, 4 figure

    One-step preparation of cluster states in quantum dot molecules

    Full text link
    Cluster states, a special type of highly entangled states, are a universal resource for measurement-based quantum computation. Here, we propose an efficient one-step generation scheme for cluster states in semiconductor quantum dot molecules, where qubits are encoded on singlet and triplet state of two coupled quantum dots. By applying a collective electrical field or simultaneously adjusting interdot bias voltages of all double-dot molecule, we get a switchable Ising-like interaction between any two adjacent quantum molecule qubits. The initialization, the single qubit measurement, and the experimental parameters are discussed, which shows the large cluster state preparation and one-way quantum computation implementable in semiconductor quantum dots with the present techniques.Comment: 5 pages, 3 figure

    Electronic Properties of Graphene Nanoribbon on Si(001) Substrate

    Full text link
    We show by first-principles calculations that the electronic properties of zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chains across their width adsorbed perpendicularly to the Si dimer rows possess an energy gap, while wider Z-GNRs are metallic due to width-dependent interface hybridization. The Z-GNRs can be metastably adsorbed parallel to the Si dimer rows, but show uniform metallic nature independent of ribbon width due to adsorption induced dangling-bond states on the Si surface.Comment: 13 pages, 3 figure
    • …
    corecore